

Wounded hero revived

Lessons learned from porting M2Crypto to
Py3k

Matěj Cepl <mcepl@cepl.eu>

https://matej.ceplovi.cz/clanky/PyCon18-
m2crypto/

Origin

● There are two goals of this talk:
– pulling dead projects out of their graves
– porting to Python 3

Origin

● M2Crypto was a leftover from a failed
project Chandler.

● One of its problems was trying to do
everything on their own, and so they
wrote their own crypto binding.

● Project collapsed 2009, but final funds
for the M2Crypto maintainer run out on
2011.

M2Crypto

● Maintained in Red Hat by Miloslav
Trmač; not having upstream collected
all patches in the packaging repository.

● I expected in May 2015 that its few
users can use an upstream consisting
from original and a few patches on top.

● But users were not few, so I needed to
do something thinking about the future
of the project. Something like SWOT
analysis.

Strengths and weaknesses

● Backed up by stable C library
● Rather large coverage of OpenSSL API
● Surprisingly widespread use
● Large test suite

● Unmapped issues
● Python 3
● M2Crypto API too close to OpenSSL
● No support for Mac OS X and Windows

Opportunities & Threats

● Satisfying current user base
● Replacing PyCrypto & co. (home-brew

implementations of crypto algorithms)
● Goal of maintenance is to maintain API
● Extend support on non-Linux platforms

● Python ssl module
● Python cryptography project.

Strategy

● Two layers: Python & C API
● Documentation strings and type hints
● CI
● Extension of platform support

C API

● All Unicode/bytes translation happens
on C level as well

● Two targets (py2k and py3k) and two
backends (OpenSSL 1.0 and 1.1 API)

● Based on swig, which fortunately
natively supports --py3.

● Minimize use of #ifdef s and rather use
included shims for missing functions.

C shims of missing functions

● For OpenSSL < 1.1
● For Python 2

– PyLong_FromLong() and
PyUnicode_AsUTF8() just simple
#defines.

– All Pythons >= 2.6 contain whole set of
Py3k function stubs in bytesobject.h.

● For Python 3
– PyFile_AsFile() I have no idea, why it

was removed from py3k API

Type Hints

● PEP 484 providing optional type
annotations. Quite controversial, but
clearly very useful for libraries

● Native for Python >= 3.5, but supports
py2k compatible syntax:
def sum(x, y):
 # type: (int, int) -> int
 return x + y

Especially useful for our situation:
marking types helps us to analyze what
individual py2k str actually mean.

Python porting (shims again)

The same principles apply as with C
functions, “shims, not #ifdefs“.
● Plenty of issues are resolved by using
six (or modernize, future), so use them.

● Do not hesitate to create your own
shims. So I have for example, bin_to_hex
and oct_to_num or padding functions
there.

● http://python-
future.org/compatible_idioms.html

Questions?

● https://gitlab.com/m2crypto/m2crypto/
● mcepl@cepl.eu or @mcepl

